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Theory Miniclusters Signatures Outlook

AXIONS

QCD Axion:
Solves strong CP problem of QCD, ma ≈ 26µeV

Strength of CP violation θ ∈ [−π, π], experiments show θ ≲ 10−10?

Solution: Peccei-Quinn Mechanism
Introduce scalar particle with shift symmetry (axion)
Axion oscillates around CP-conserving minimum at Tosc
Behaves like CDM at low T

ALPs:
Similar DM candidates: axion-like particles (ALPs) with 10−12 eV ≤ ma ≤ 10−3 eV
Both provide rich potentially observable substructure
−→ Try to detect/exclude axion dark matter using small-scale structure!
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AXION SMALL-SCALE STRUCTURE

Bound by gravitational interactions

Stability affected by weak (attractive) self-interactions

Non-relativistic wavefunction ψ(x, t) for axion field

Axion/ALP Stars (ASs): stationary solutions (solitons)

ψ(x, t) = ψ(r)e−iEt

Extremely dense objects ρ⋆ ∼ 1023 GeV/cm3

Very promising for detection, need to infer AS properties for predictions!
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MINICLUSTER FORMATION
Gravitationally bound DM clumps, seeded by initial fluctuations of axion field

Typical collapse redshift zc ≃ zeq = 3402

Initial overdensity parameter δ ≡ δρa/ρ̄a ∼ 1 sets

ρmc ≃ 7 · 106 δ3(1 + δ)
GeV
cm3

Characteristic MC mass

M0 = ρ̄a(Tosc)
4π
3

(
π

kosc

)3
∼ 10−12M⊙

Properties and linear evolution roughly known
Initial conditions from cosmological evolution of axion field
Evolution from linear mass growth (Press-Schechter theory)
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MINICLUSTER EVOLUTION

[1]
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AXION SUBSTRUCTURE IN THE MILKY WAY

Axion Stars ⊂ Miniclusters ⊂ Galaxies ⊂ ...

Use linear theory prediction for MC mass distribution

Normalize total MC to the total DM in the Milky Way

Derive the AS masses from the MC mass distribution

Use core-halo relation for AS solitons

M⋆(z) = Mh,min(z)
[

M
Mh,min(z)

]1/3

Calculate collision rates with astrophyical sources −→ DM signals
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DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars
Relativistic Axion bursts (Axion novae/Bosenovae)
for M⋆ ≥ M⋆,Nova

Parametric Resonance for M⋆ ≥ M⋆,γ

Miniclusters & Axion Stars:
AS/MC-NS encounters

Lead to resonance when ωp ≃ ma

Requires ωp ≳ ma and active NS magnetic field

[2]
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RESULTS

Taken from [2404.07908v1]

AS/MC collision rates with NS are large, but

Plasma resonance criterion yields only ∼ 1 /decade signals

MC-MC mergers can occur as often as 103 /yr

Could lead to both axion novae and radio conversion

All of the above without including AS accretion
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ACCRETION MODELS

External Accretion: Internal Accretion: [4]
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PRELIMINARY RESULTS

Models give predicted radio background −→ compare with observed backgrounds

Constrain the axion-photon coupling gaγγ :
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SUMMARY

Neutron Star Collisions are predicted to occur frequently in our galaxy

But radio signals from such encounters are strongly suppressed by the resonance
condition ma ≳ ωp !

Linear theory already predicts existence of
Super-critical axion stars (Bosenovae)
Near-critical ALP stars (Parametric Resonance)
Frequent MC-MC merger rates (both of the above)

Without considering long-time AS accretion and non-linear theory

Even more possibilities including accretion

E.g. new model of AS accretion with resonant photon emission

10 / 10



Theory Miniclusters Signatures Outlook

SUMMARY

Neutron Star Collisions are predicted to occur frequently in our galaxy

But radio signals from such encounters are strongly suppressed by the resonance
condition ma ≳ ωp !

Linear theory already predicts existence of
Super-critical axion stars (Bosenovae)
Near-critical ALP stars (Parametric Resonance)
Frequent MC-MC merger rates (both of the above)

Without considering long-time AS accretion and non-linear theory

Even more possibilities including accretion

E.g. new model of AS accretion with resonant photon emission

10 / 10



Theory Miniclusters Signatures Outlook

SUMMARY

Neutron Star Collisions are predicted to occur frequently in our galaxy

But radio signals from such encounters are strongly suppressed by the resonance
condition ma ≳ ωp !

Linear theory already predicts existence of
Super-critical axion stars (Bosenovae)
Near-critical ALP stars (Parametric Resonance)
Frequent MC-MC merger rates (both of the above)

Without considering long-time AS accretion and non-linear theory

Even more possibilities including accretion

E.g. new model of AS accretion with resonant photon emission

10 / 10



Thank you for
your attention!
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AXIONS & ALPS

Strong CP problem of QCD, ma ≈ 26µeV
possible violation of Charge & Parity symmetry
neutron dipole moment dn ∼ 10−16 θ e cm
experimental measurements show
dn < 1.8 · 10−26 eθ cm ⇒ θ ≲ 10−10

Why is θ ∈ [−π, π] so small?

Solution: PQ Mechanism (Peccei, Quinn)
New complex scalar ϕ(x) = ϕ0(x) eia(x)/fa

Axion a(x) is angular degree of freedom
U(1) shift symmetry broken at T ∼ fa
At T ∼ TQCD potential V(a) is generated
Axion acquires mass and behaves like CDM

Similar DM candidates: axion-like particles
(ALPs) with 10−12 eV ≤ ma ≤ 10−3 eV
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FAIRBAIRN RESULTS
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MCMF & ASMF

MCMF: ASMF:
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