Properties and Signatures of ALP Stars in the Milky Way

Dennis Maseizik

II. Institute for theoretical Physics, Hamburg University

Hamburg, May 2nd 2024

AXIONS

QCD Axion:

- Solves strong CP problem of QCD, $m_a \approx 26 \,\mu\text{eV}$
- Strength of CP violation $\theta \in [-\pi, \pi]$, experiments show $\theta \lesssim 10^{-10}$?

AXIONS

QCD Axion:

- Solves strong CP problem of QCD, $m_a \approx 26 \,\mu\text{eV}$
- Strength of CP violation $\theta \in [-\pi, \pi]$, experiments show $\theta \lesssim 10^{-10}$?
- Solution: Peccei-Quinn Mechanism
 - Introduce scalar particle with shift symmetry (axion)
 - ullet Axion oscillates around CP-conserving minimum at $T_{
 m osc}$
 - Behaves like CDM at low T

AXIONS

QCD Axion:

- Solves strong CP problem of QCD, $m_a \approx 26 \,\mu\text{eV}$
- Strength of CP violation $\theta \in [-\pi, \pi]$, experiments show $\theta \lesssim 10^{-10}$?
- Solution: Peccei-Quinn Mechanism
 - Introduce scalar particle with shift symmetry (axion)
 - Axion oscillates around CP-conserving minimum at $T_{\rm osc}$
 - Behaves like CDM at low T

ALPs:

- Similar DM candidates: axion-like particles (ALPs) with $10^{-12} \, \text{eV} \le m_a \le 10^{-3} \, \text{eV}$
- Both provide rich potentially observable substructure
 - \longrightarrow Try to detect/exclude axion dark matter using small-scale structure!

AXION SMALL-SCALE STRUCTURE

- Bound by gravitational interactions
- Stability affected by weak (attractive) self-interactions

AXION SMALL-SCALE STRUCTURE

- Bound by gravitational interactions
- Stability affected by weak (attractive) self-interactions
- Non-relativistic wavefunction $\psi(x,t)$ for axion field
- Axion/ALP Stars (ASs): stationary solutions (solitons)

$$\psi(x,t) = \psi(r)e^{-iEt}$$

AXION SMALL-SCALE STRUCTURE

- Bound by gravitational interactions
- Stability affected by weak (attractive) self-interactions
- Non-relativistic wavefunction $\psi(x,t)$ for axion field
- Axion/ALP Stars (ASs): stationary solutions (solitons)

$$\psi(x,t) = \psi(r)e^{-iEt}$$

- Extremely dense objects $\rho_{\star} \sim 10^{23} \, \text{GeV/cm}^3$
- Very promising for detection, need to infer AS properties for predictions!

MINICLUSTER FORMATION

- Gravitationally bound DM clumps, seeded by initial fluctuations of axion field
- Typical collapse redshift $z_c \simeq z_{\rm eq} = 3402$

MINICLUSTER FORMATION

- Gravitationally bound DM clumps, seeded by initial fluctuations of axion field
- Typical collapse redshift $z_c \simeq z_{\rm eq} = 3402$
- Initial overdensity parameter $\delta \equiv \delta \rho_a/\bar{\rho}_a \sim 1$ sets

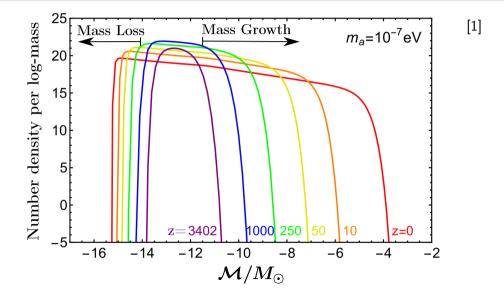
$$\rho_{mc} \simeq 7 \cdot 10^6 \, \delta^3 (1 + \delta) \frac{\text{GeV}}{\text{cm}^3}$$

Characteristic MC mass

$$\mathcal{M}_0 = \bar{\rho}_a(T_{\rm osc}) \frac{4\pi}{3} \left(\frac{\pi}{k_{\rm osc}}\right)^3 \sim 10^{-12} M_{\odot}$$

MINICLUSTER FORMATION

- Gravitationally bound DM clumps, seeded by initial fluctuations of axion field
- Typical collapse redshift $z_c \simeq z_{\rm eq} = 3402$
- Initial overdensity parameter $\delta \equiv \delta \rho_a/\bar{\rho}_a \sim 1$ sets


$$\rho_{mc} \simeq 7 \cdot 10^6 \, \delta^3 (1 + \delta) \frac{\text{GeV}}{\text{cm}^3}$$

Characteristic MC mass

$$\mathcal{M}_0 = \bar{
ho}_a(T_{
m osc}) rac{4\pi}{3} \left(rac{\pi}{k_{
m osc}}
ight)^3 \sim 10^{-12} M_{\odot}$$

- Properties and linear evolution roughly known
 - Initial conditions from cosmological evolution of axion field
 - Evolution from linear mass growth (Press-Schechter theory)

MINICLUSTER EVOLUTION

 $\bullet \ \, \mathsf{Axion} \ \, \mathsf{Stars} \subset \mathsf{Miniclusters} \subset \mathsf{Galaxies} \subset ...$

- Axion Stars \subset Miniclusters \subset Galaxies \subset ...
- Use linear theory prediction for MC mass distribution
- Normalize total MC to the total DM in the Milky Way

- Axion Stars \subset Miniclusters \subset Galaxies \subset ...
- Use linear theory prediction for MC mass distribution
- Normalize total MC to the total DM in the Milky Way
- Derive the AS masses from the MC mass distribution
- Use core-halo relation for AS solitons

$$M_{\star}(z) = \mathcal{M}_{h,\min}(z) \left[\frac{\mathcal{M}}{\mathcal{M}_{h,\min}(z)} \right]^{1/3}$$

- Axion Stars \subset Miniclusters \subset Galaxies \subset ...
- Use linear theory prediction for MC mass distribution
- Normalize total MC to the total DM in the Milky Way
- Derive the AS masses from the MC mass distribution
- Use core-halo relation for AS solitons

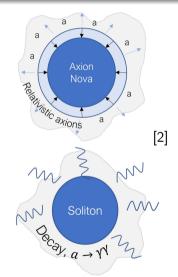
$$M_{\star}(z) = \mathcal{M}_{h,\min}(z) \left[\frac{\mathcal{M}}{\mathcal{M}_{h,\min}(z)} \right]^{1/3}$$

ullet Calculate collision rates with astrophylical sources \longrightarrow DM signals

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

• Relativistic Axion bursts (Axion novae/Bosenovae) for $M_{\star} \geq M_{\star, \mathrm{Nova}}$



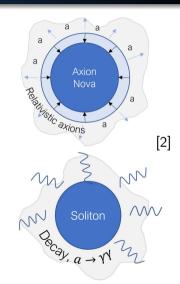
[2]

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

- Relativistic Axion bursts (Axion novae/Bosenovae) for $M_{\star} \geq M_{\star, Nova}$
- Parametric Resonance for $M_{\star} \geq M_{\star,\gamma}$

Theory Miniclusters Signatures Outlook

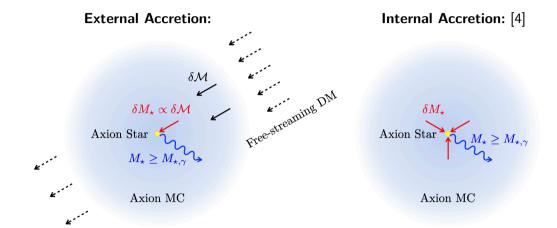

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

- Relativistic Axion bursts (Axion novae/Bosenovae) for $M_{\star} \geq M_{\star, Nova}$
- Parametric Resonance for $M_{\star} \geq M_{\star,\gamma}$

Miniclusters & Axion Stars:

- AS/MC-NS encounters
- Lead to resonance when $\omega_p \simeq m_a$
- Requires $\omega_p \gtrsim m_a$ and active NS magnetic field

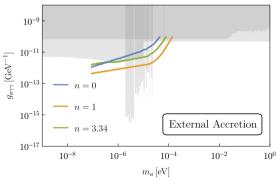

• Taken from [2404.07908v1]

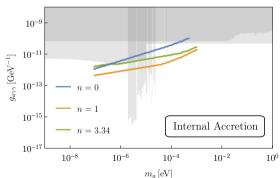
- Taken from [2404.07908v1]
- AS/MC collision rates with NS are large, but
- ullet Plasma resonance criterion yields only $\sim 1 \, / {
 m decade}$ signals

- Taken from [2404.07908v1]
- AS/MC collision rates with NS are large, but
- ullet Plasma resonance criterion yields only ~ 1 /decade signals
- MC-MC mergers can occur as often as $10^3 / yr$
- Could lead to both axion novae and radio conversion

- Taken from [2404.07908v1]
- AS/MC collision rates with NS are large, but
- ullet Plasma resonance criterion yields only ~ 1 /decade signals
- MC-MC mergers can occur as often as 10^3 /yr
- Could lead to both axion novae and radio conversion
- All of the above without including AS accretion

ACCRETION MODELS




Preliminary Results

- $\bullet \ \mathsf{Models} \ \mathsf{give} \ \mathsf{predicted} \ \mathsf{radio} \ \mathsf{background} \longrightarrow \mathsf{compare} \ \mathsf{with} \ \mathsf{observed} \ \mathsf{backgrounds}$
- Constrain the axion-photon coupling $g_{a\gamma\gamma}$:

Preliminary Results

- ullet Models give predicted radio background \longrightarrow compare with observed backgrounds
- Constrain the axion-photon coupling $g_{a\gamma\gamma}$:

SUMMARY

- Neutron Star Collisions are predicted to occur frequently in our galaxy
- But radio signals from such encounters are strongly suppressed by the resonance condition $m_a \gtrsim \omega_p$!

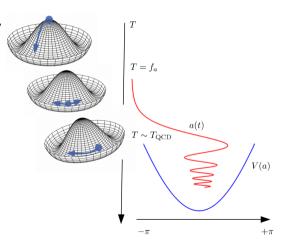
SUMMARY

- Neutron Star Collisions are predicted to occur frequently in our galaxy
- But radio signals from such encounters are strongly suppressed by the resonance condition $m_a \gtrsim \omega_p$!
- Linear theory already predicts existence of
 - Super-critical axion stars (Bosenovae)
 - Near-critical ALP stars (Parametric Resonance)
 - Frequent MC-MC merger rates (both of the above)
- Without considering long-time AS accretion and non-linear theory

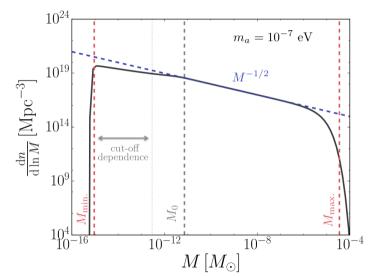
Theory Miniclusters Signatures **Outlook**

SUMMARY

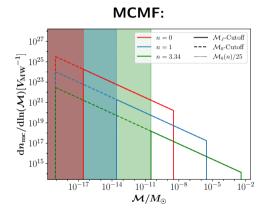
- Neutron Star Collisions are predicted to occur frequently in our galaxy
- But radio signals from such encounters are strongly suppressed by the resonance condition $m_a \gtrsim \omega_p$!
- Linear theory already predicts existence of
 - Super-critical axion stars (Bosenovae)
 - Near-critical ALP stars (Parametric Resonance)
 - Frequent MC-MC merger rates (both of the above)
- Without considering long-time AS accretion and non-linear theory
- Even more possibilities including accretion
- E.g. new model of AS accretion with resonant photon emission

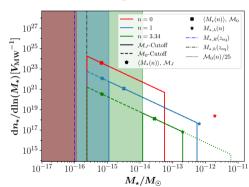

Thank you for your attention!

References:


- [1]: Fairbairn and Marsh (2019): Structure Formation and Microlensing with Axion Miniclusters
- [2]: Du et al. (2024): Soliton Merger Rates and Enhanced Axion Dark Matter Decay
- [3]: Maseizik and Sigl (2024): Distributions and Collision Rates of ALP Stars in the Milky Way
- [4]: Dmitriev et al. (2024): Self-similar Growth of Bose Stars

AXIONS & ALPS


- ullet Strong CP problem of QCD, $m_a pprox 26\,\mu \mathrm{eV}$
 - possible violation of Charge & Parity symmetry
 - neutron dipole moment $d_v \sim 10^{-16} \, \theta \, e \, \mathrm{cm}$
 - experimental measurements show $d_n < 1.8 \cdot 10^{-26} \ e\theta \ {\rm cm} \Rightarrow \theta \lesssim 10^{-10}$
 - Why is $\theta \in [-\pi, \pi]$ so small?
- Solution: PQ Mechanism (Peccei, Quinn)
 - New complex scalar $\phi(x) = \phi_0(x) e^{ia(x)/f_a}$
 - Axion a(x) is angular degree of freedom
 - ullet U(1) shift symmetry broken at $T \sim f_a$
 - At $T \sim T_{OCD}$ potential V(a) is generated
 - Axion acquires mass and behaves like CDM
- Similar DM candidates: axion-like particles (ALPs) with 10^{-12} eV $\leq m_a \leq 10^{-3}$ eV


FAIRBAIRN RESULTS

MCMF & ASMF

ASMF:

