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Theory
AXIONS

QCD Acxion:
@ Solves strong CP problem of QCD, m, =~ 26 ueV

e Strength of CP violation 6 € [—m, 7], experiments show § < 107107
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AXIONS

QCD Acxion:
@ Solves strong CP problem of QCD, m, =~ 26 ueV

e Strength of CP violation 6 € [—m, 7], experiments show § < 107107

@ Solution: Peccei-Quinn Mechanism

o Introduce scalar particle with shift symmetry (axion)
e Axion oscillates around CP-conserving minimum at Ty
o Behaves like CDM at low T

ALPs:
o Similar DM candidates: axion-like particles (ALPs) with 107 12eV < m, < 1073 eV

@ Both provide rich potentially observable substructure
— Try to detect/exclude axion dark matter using small-scale structure!
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Theory
AXION SMALL-SCALE STRUCTURE

@ Bound by gravitational interactions

o Stability affected by weak (attractive) self-interactions
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Theory
AXION SMALL-SCALE STRUCTURE

@ Bound by gravitational interactions

Stability affected by weak (attractive) self-interactions

Non-relativistic wavefunction v (x, t) for axion field

Axion/ALP Stars (ASs): stationary solutions (solitons)

D(x,1) = p(r)e”™

Extremely dense objects p, ~ 10%* GeV /cm?

@ Very promising for detection, need to infer AS properties for predictions!
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Miniclusters
MiNIcLUSTER FORMATION

@ Gravitationally bound DM clumps, seeded by initial fluctuations of axion field

e Typical collapse redshift z. ~ zoq = 3402
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Miniclusters
MiNIcLUSTER FORMATION

@ Gravitationally bound DM clumps, seeded by initial fluctuations of axion field
e Typical collapse redshift z. ~ zoq = 3402

o Initial overdensity parameter 6 = 0p,/ps ~ 1 sets

GeV

~ 6 3

@ Characteristic MC mass

3
MO = ﬁa(Tosc)ﬁ T ~ 10_12M@
3 kosc
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Miniclusters
MiNIcLUSTER FORMATION

@ Gravitationally bound DM clumps, seeded by initial fluctuations of axion field

Typical collapse redshift z. ~ zoq = 3402

Initial overdensity parameter § = dp,/ps ~ 1 sets

GeV
Pme =T 10°53(1 4 6)

cm
@ Characteristic MC mass

3
Moy = ﬁa(Tosc)ﬂ < T > ~ 10_12M@

3 kOSC

Properties and linear evolution roughly known
e Initial conditions from cosmological evolution of axion field

o Evolution from linear mass growth (Press-Schechter theory) 210



Miniclusters
MinicLUSTER EvoLuTION
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Signatures
AXION SUBSTRUCTURE IN THE MILKY WAY

@ Axion Stars C Miniclusters C Galaxies C ...
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@ Axion Stars C Miniclusters C Galaxies C ...

@ Use linear theory prediction for MC mass distribution
@ Normalize total MC to the total DM in the Milky Way
@ Derive the AS masses from the MC mass distribution

@ Use core-halo relation for AS solitons

1/3
M*(Z) = Mh,min(z) |:-/\/lh/1\n/fn(z):|
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Signatures
AXION SUBSTRUCTURE IN THE MILKY WAY

@ Axion Stars C Miniclusters C Galaxies C ...

@ Use linear theory prediction for MC mass distribution
@ Normalize total MC to the total DM in the Milky Way
@ Derive the AS masses from the MC mass distribution

@ Use core-halo relation for AS solitons

1/3
M*(Z) = Mh,min(z) |:-/\/lh/1\n/fn(z):|

Calculate collision rates with astrophyical sources — DM signals
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Signatures

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

@ Relativistic Axion bursts (Axion novae/Bosenovae)
for M, > M*,Nova

[2]

6/10



Signatures

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

@ Relativistic Axion bursts (Axion novae/Bosenovae)
for M, > M*,Nova

@ Parametric Resonance for M, > M, ,

6/10



Signatures

DETECTING AXION SMALL-SCALE STRUCTURE

Axion Stars

@ Relativistic Axion bursts (Axion novae/Bosenovae)
for M, > M*,Nova

@ Parametric Resonance for M, > M, ,

Miniclusters & Axion Stars:
@ AS/MC-NS encounters

@ Lead to resonance when w, >~ m,

@ Requires w, 2 m, and active NS magnetic field
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Signatures
REesuLTs

o Taken from [2404.07908v1]
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Signatures
REesuLTs

Taken from [2404.07908v1]

AS/MC collision rates with NS are large, but

Plasma resonance criterion yields only ~ 1 /decade signals
@ MC-MC mergers can occur as often as 10° /yr

Could lead to both axion novae and radio conversion

All of the above without including AS accretion
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QOutlook
ACCRETION MODELS

External Accretion: Internal Accretion: [4]
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QOutlook
PRELIMINARY RESULTS

@ Models give predicted radio background — compare with observed backgrounds

@ Constrain the axion-photon coupling guy+:

9/10



Outlook

PRELIMINARY RESULTS

@ Models give predicted radio background — compare with observed backgrounds

@ Constrain the axion-photon coupling guy+:
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Outlook

SuMMARY

@ Neutron Star Collisions are predicted to occur frequently in our galaxy

@ But radio signals from such encounters are strongly suppressed by the resonance
condition m, 2 w), !
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@ But radio signals from such encounters are strongly suppressed by the resonance
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@ Linear theory already predicts existence of

o Super-critical axion stars (Bosenovae)
o Near-critical ALP stars (Parametric Resonance)
o Frequent MC-MC merger rates (both of the above)

@ Without considering long-time AS accretion and non-linear theory
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QOutlook
SuMMARY

@ Neutron Star Collisions are predicted to occur frequently in our galaxy

@ But radio signals from such encounters are strongly suppressed by the resonance
condition m, 2 w), !

Linear theory already predicts existence of
o Super-critical axion stars (Bosenovae)
o Near-critical ALP stars (Parametric Resonance)
o Frequent MC-MC merger rates (both of the above)

Without considering long-time AS accretion and non-linear theory
@ Even more possibilities including accretion

@ E.g. new model of AS accretion with resonant photon emission
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Thank you for
your attention!
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Outlook

Axions & ALPs

@ Strong CP problem of QCD, m, =~ 26 ueV

e possible violation of Charge & Parity symmetry T
o neutron dipole moment d, ~ 1071¢9ecm
e experimental measurements show s

dy < 1.8-107%¢fcm = 0 < 1010
o Why is § € [—m, 7| so small?

@ Solution: PQ Mechanism (Peccei, Quinn)
o New complex scalar ¢(x) = ¢o(x) e/

o Axion a(x) is angular degree of freedom
o U(1) shift symmetry broken at T ~ f, Vie)
o At T ~ Tycp potential V(a) is generated
e Axion acquires mass and behaves like CDM
- :7r

@ Similar DM candidates: axion-like particles
(ALPs) with 10712eV < m, < 1073 eV
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Outlook

MCMF & ASMF

MCMF: ASMF:
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